Temperature measurements using multicolor pyrometry in thermal radiation heating environments.
نویسندگان
چکیده
Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100-2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700-1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.
منابع مشابه
Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline
An overview of several innovations regarding in situ laser-heating techniques in the diamond anvil cell at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility is presented. Pyrometry measurements have been adapted to allow simultaneous double-sided temperature measurements with the installation of two additional online laser systems: a CO2 and a pulsed Nd:YAG laser sy...
متن کاملUnsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation
The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...
متن کاملEntropy generation in hydromagnetic and thermal boundary layer flow due to radial stretching sheet with Newtonian heating
The entropy generation during hydromagnetic boundary layer flow of a viscous incompressible electrically conducting fluid due to radial stretching sheet with Newtonian heating in the presence of a transverse magnetic field and the thermal radiation has been analyzed. The governing equations are then solved numerically by using the fourth order Runge-Kutta method with shooting technique. The eff...
متن کاملInvestigations of Non-thermal Microwave Effects Using Hybrid Conventional/microwave Heating Calorimetry
A hybrid calorimeter is described whereby the test specimen may be heated using either hot air and/or microwave radiation. Thus it is possible to study phase transitions of materials under conditions ranging from purely conventional heating to pure microwave heating or mixtures thereof. Measurements using silver iodide showed that its phase change from the low temperature β-phase to the high te...
متن کاملSolar Radiative Heating in First Year Sea Ice
Temperature measurements taken in young landfast Antarctic sea ice show daily oscillations consistent with heating by solar radiation. We present and solve a heat conduction model for the temperature with a nonlinear thermal capacity and a distributed source term for solar power absorption based on Monte Carlo scattering simulations of penetrating photons. We observe two characteristic modes fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 85 4 شماره
صفحات -
تاریخ انتشار 2014